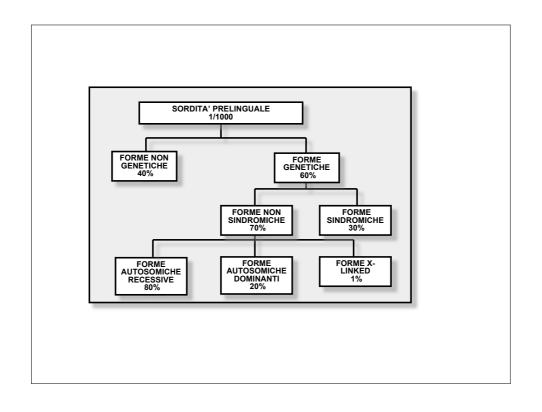


Università degli studi di Trieste


Dipartimento di scienze della riproduzione e dello sviluppo

IRCCS Burlo Garofolo

SOC Genetica Medica

I TEST DI GENETICA MOLECOLARE PER LE SORDITÀ EREDITARIE

http://webhost.ua.ac.be/hhh/

Gene	Mutated protein	AD SNHL	AR SNHL	X-chromosomal	Allelic syndromic SNI
ACTG1	Gamma actin-1	DFNA20/26	nr	nr	nr
CDH23	Cadherin-23	nr	DFNB12	nr	Usher syndrome 1D
CLDN14	Claudin-14	nr	DFNB29	nr	nr
COCH	Cochlin	DFNA9	nr	nr	nr
COL11A2	Collagen-11A2	DFNA13	nr	nr	Stickler syndrome
DFNA5	DFNA5	DFNA5	nr	nr	nr
DDP1	Deafness-dystonia peptide	nr	nr	DFN1	Mohr-Tranebjaerg syndrome
DIAPH1	Diaphanous	DFNA1	nr	nr	nr
DSFP	Dentin-sialo-phospho-protein	DFNA39	nr	nr	Dentinogenesis Imperfecta I syndron
ESPN	Espin	nr	DFNB36	nr	nr
EYA4	Eve absent-4	DFNA10	nr	nr	nr
GJB2	Connexin-26	DFNA3	DFNB1	nr	KID syndrome, Voltwinkle's syndrom
GJB3	Connexin-31	DFNA2		nr	HIH with peripheal neuropathy
GJB6	Connexin-30	DFNA3	DFNB1	nr	KID syndrome, Clouston syndrome
KCNQ4	Potasssium channel	DFNA2	nr	nr	nr
MYO1A	Myosin-1A	DFNA48	nr	nr	nr
MYO3A	Myosin-3A	nr	DFNB30	nr	nr
MYO6	Myosin-6	DFNA22	DFNB37	nr	nr
MYO7A	Myosin heavy-chain-7A	DFNA11	DFNB2	nr	Usher syndrome 1B
мүн9	Myosin heavy-chain-IIA	DFNA 17	nr	nr	Fechtner, Sebastian, Epstein, Alport-like syndrome
MYH14	Myosin heavy-chain-14	DFNA4	nr	nr	nr
MYO15	Myosin-15A	nr	DFNB3	nr	nr
OTOA	Otoancorin	nr	DFNB22	nr	nr
OTOF	Otoferlin	nr	DNFB9	nr	nr
PCDH15	Protocadherin	nr	DFNB23	nr	Usher syndrome
PDZ	Whirtin	nr	DFNB31	nr	nr
POU3F4	POU3F4 transcription factor	nr	nr	DFN3	Stapes gusher syndro
POU4F3	POU4F3 transcription factor	DFNA 15	nr	nr	nr
SLC2644	Pendrin/PDS	nr	DFNB4	nr	Pendred syndrome
SLC2645	Prestin	nr	DFNBx	nr	nr
STRC	Stereocilin	nr	DFNB16	nr	nr
TECTA	Alpha-tectorin	DFNA8/12	DFNB21	nr	nr
TFCP2L3	Transcription factor	DFNA28	nr	nr	nr
TMC1	Tm cochlear expressed	DFNA36	DFNB7/11	nr	nr
TME	Tm inner ear expressed protein	m	DFNB6	nr	nr
TMPRSS3	Tm serine protease	nr	DFNB8/10	nr	nr
USH1C	Harmonin	nr	DFNB18	nr	Usher syndrome 1C
WFS1	Wolframin	DFNA6/14/38	nr	nr	Wolfram syndrome

- •Circa 85 loci correlati a sordità non sindromica
- •Più di 40 geni identificati come correlati a sordità

Notevole eterogeneità genetica

Gene Non-syndromic HL Additional phenotype Cytoskeletal proteins Myosin IIIA Myosin VI Myosin VIIA Myosin XV MYO3A MYO6 MYO7A MYO15 DFNB30 DFNB37 – DFNA22 DFNB2 – DFNA11 DFNB3 Usher 1B STRC TECTA OTOA COL11A2 DFNB16 DFNB21 - DFNA8/12 DFNB22 DFNB53 OSMED, Stickler GJB2 GJB6 GJB3 SLC26A4 TMC1 CLDN14 SLC26A5 DFNB1 – DFNA3 DFNB1 – DFNA3 DFNA2 DFNB4 DFNB7 – DFNA36 DFNB29 Vohwinkel, PPD, KID^a Clouston EKV^b Pendred DFNB6 DFNB8/10 DFNB9 DFNB12 DFNB18 DFNB23 DFNB31 DFNB36 Usher 1D Usher 1C Usher 1F ^aPPD, palmoplantar keratoderma; KID, keratitis-ichthyosis deafness ^bEKV: erythrokeratodermia variabilis.

Classificazione dei geni a tutt'oggi identificati nelle sordità di tipo non sindromico.

 Gene
 Proportion (%)
 Ethnic group

 GJB2
 50
 Various

 GJB6
 5
 Various

 MVO15
 5
 Pakistan

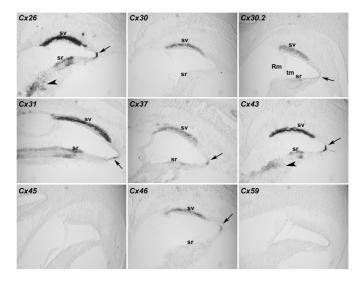
 SLC2844
 5
 Asian

 TMC1
 5
 India/Pakistan

 OTOF
 3
 Spain

 CDH23
 5
 Various

 STRC
 5
 Middle Eastern


 All others
 <1</td>
 Various

Il contributo maggiore alla determinazione di un fenotipo sordità è ascrivibile a GJB2; gli altri geni contribuiscono con frequenze pari o inferiori al 5%

Le connessine

Catenin Actin filaments Catenin Adheren junction Catenin Adheren junction Catenin Adheren junction Catenin Adheren junction Intermediate filaments Desmosome Sina wacutan Sina wa

Espressione delle connessine nella coclea

sv: stria vascularis

sr: sensory region

tm: tectorial membrane

Rm: Reissner's membrane

Mutazioni delle connessine correlate a sordità

CX26, CX30, CX31, CX43

Mutazioni delle connessine in sordità sindromiche

CX26

Palmoplantar Keratoderma Palmoplantar Hyperkeratosis Vohwinkel Syndrome

Mutazioni delle connessine associate ad altre patologie

CX31 Erythrokertodermia variabilis

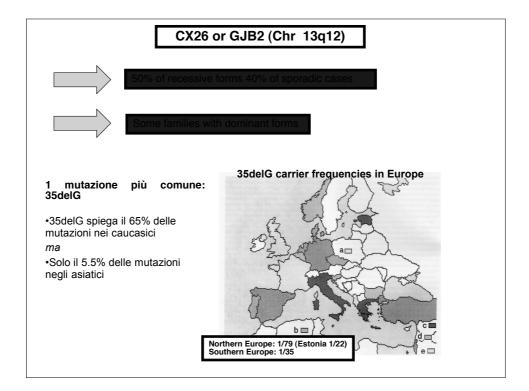
CX32 CMT1X

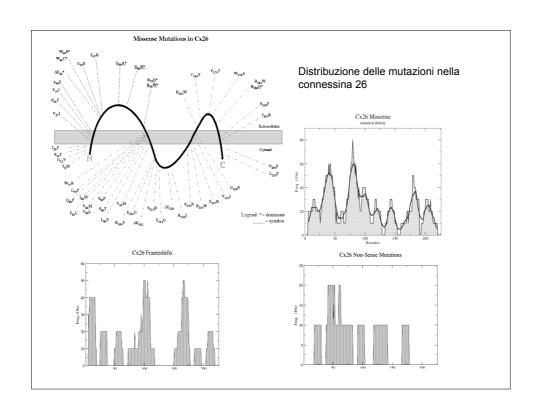
CX30 Hydrotic ectodermal dysplasia

CX46 congenital cataract

CX50 zonular cataract

CX43 ODDD syndrome




CONNEXIN-DEAFNESS HOMEPAGE

http://www.crg.es/deafness

GENE	MUTATIONS		POLYMORPHISMS	
GENE	Dominant	Recessive	Unknown	POLTWORPHISMS
GJB2 (Cx26)	9	95	10	42
GJB3 (Cx31)	2	3	-	11
GJB6 (Cx30)	2	Deletion	-	6
GJA1 (Cx43)	-	2	-	-

Country	Patients (n)	GJB2 (%) ^a	35delG/35delG (%)
Australia	74 43	13.5 23.3	4.1 18.6
Austria			
Austria Brazil	69 62	18.8 12.9	10.1 9.7
Brazii China	118	12.9	9.7
Czech Republic	156	37.8	28.8
Denmark	165	4.2	1.8
Egypt	111	14.4	9.0
France	88	39.8	28.4
Germany	342	6.4	3.8
Germany	147	14.3	8.8
Germany	228 365	16.7 15.6	8.3 0.0
Ghana Greece	210	33.3	30.0
India	215	17.7	0.0
Iran	83	10.8	4.8
Israel	75	33.3	14.7
Italy	155	27.1	21.9
Italy	53	39.6	30.2
Italy/Spain	136	36.8	32.4
Italy/Spain	576	31.6	NI
Japan	35	28.6	0.0
Japan	50	10.0	0.0
Japan Jordan	53 68	15.1 16.2	0.0 16.2
Jordan Korea	147	8.2	0.0
Kurdish	86	15.1	8.1
Lebanon	48	33.3	31.3
Oman	51	0.0	0.0
Pakistan	196	6.1	0.0
Palestinian	48	22.9	10.4
Sicily	71	15.5	11.3
Slovakia Slovakia ^b	90	45.6	40.0
Spain/Cuba	54 422	29.6 30.6	1.9 NI
Taiwan	169	7.1	0.0
Thailand	166	7.2	0.0
Turkey	60	31.7	21.7
Turkey	235	ND	20.4
Turkey	371	19.7	15.1
UK	210	14.8	11.9
USA	99	18.2	2.0
USA USA	209 58	27.3 34.5	14.8 24.1

Alleles	Percentage	Reference
35delG-35delG	53	[10]
35delG-167delT	8	[10]
35delG-342del	3	[10,77]
167delT-167delT	2	[10]
V37I-V37I	2	[10]
35delG-269insT	2	[10]
35delG-313del14	2	[10]
35delG-5' donor SS*	2	[10]
M34T/V37I	2	[16]
M34T/M34T	2	[16,247]
M34T/167delT	uk	[247]

Mutation	Frequency (%)
35delG	58-88
167delT	7
V37I	3
M34T	2-3
342del	2
313del14	2-7
V84L	1
R184P	1
R143W	1
5' splice danor	1
mutation IVS1 + 1G-A	
delE42, G59A, D66H,	Unknown
R75W, R184Q, W44C	
C202F, 269tnsT, F142L,	Unknown
235delC, G232A, G439A	
W77X, M34T, D179N,	Unknown
K15T, L90V, T8M	
R143W, V153I, H206S, L214P, E147K	Unknown

La distribuzione delle frequenze delle mutazioni della connessina 26 è molto variabile nelle diverse etnie. Complessivamente l'allele 35delG spiega il 50% delle mutazioni nella proteina e il 50% dei genotipi mutati in connessina 26.

GJB6 e CX30

cx26 e cx30: omologia del 77%; co-espresse nell'orecchio interno

Mutazione più frequente:

- → delezione di 342 Kb (D13S1830)
- omozigosi o eterozigosi con mutazione in trans in GJB2
- → presente Spagna, Francia Israele e UK
- → rappresenta il 10% di tutti gli alleli DFNB1.

Fenotipo: sordità prelinguale stabile, severa o profonda. Nessuna

associazione a anomalie vestibolari o radiologiche.

Notevole variabilità inter e intrafamiliare

Descritta una sola mutazione T5M associata a sordità dominante (DFNA3).

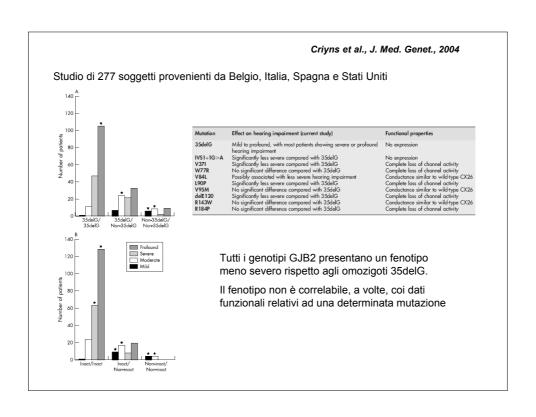
Dominant mutations					
Mutation Name Description Effect Protein domain Reference					
T5M	C to T at 14	Thr at 5 into Met	IC1	Grifa et al 1999	
63delG	del of G at 63	frameshift		Pandya, PC	

GJB3 (CX31)

Dominant mutations					
Mutation Name	Description	Effect	Protein domain	Reference	
R180X	C to T at 538	Arg at 180 into Stop	EC2	Xia et al 1998 other	
E183K	G to A at 547	Glu at 183 into Lys	EC2	Xia et al 1998 other	
Recessive mutations					
Mutation Name Description Effect Protein domain		Reference			
141del Ile	del of ATT at 423-425	del of Ile at 141	TM3	Liu et al 2000 other	
I141V	A to G at 423	Ile at 141 into Val	TM3	Liu et al 2000 other	
P223T	C to A at 667	Pro at 223 into Thr	IC3	Uyguner et al 2003 othe	

Fenotipo variabile

DFNA2 associato a perdita uditiva ad alte frequenze

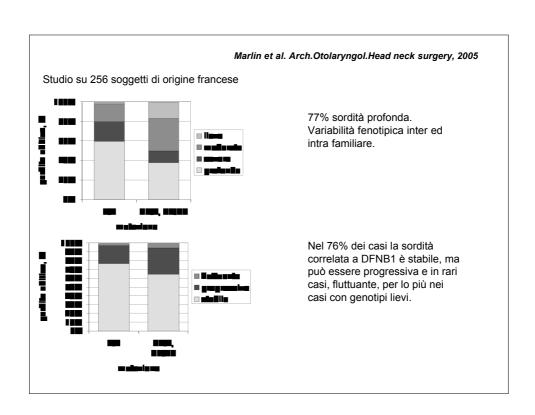

Associato a eritrocheratodermia variabile

GJB1 (CX43)

Recessive mutations					
Mutation Name Description Effect Protein domain Reference					
L11F	C to T at 31	Leu at 11 into Phe	IC1	Liu et al 2001	
V24A	T to C at 71	Val at 24 into Ala	TM1	Liu et al 2001	

Individuate in pazienti africani con sordità prelinguale profonda, recessiva o sporadica

Correlazione genotipo-fenotipo GJB2 e GJB6



Le mutazioni che determinano forme tronche di CX26 sono associate ai fenotipi più severi.

I fenotipi più gravi sono associati a omozigoti 35delG ed eterozigoti 35delG/del(GJB6-D13S1830).

Grande variabilità fenotipica all'interno dei genotipi. Geni modificatori e/o fattori ambientali portano a penetranza incompleta e a variabilità fenotipica.

.....NE CONCLUDIAMO CHE:

La correlazione genotipo fenotipo non può essere fatta univocamente: all'interno di ciascun genotipo c'è una significativa variabilità fenotipica sia in relazione alla severità che alla progressione.

La variabilità è spiegabile attraverso l'influenza di modificatori quali fattori genetici ed ambientali.

L'individuazione dei fattori modificatori potrà chiarire la variabilità genotipo-fenotipo e fornire un prezioso strumento predittivo, funzionale anche a selezionare appropriate strategie di riabilitazione per soggetti con sordità legata a DFNB1.

Altri geni implicati in sordità

SLC26A4

Codifica per un trasportatore I/CI espresso in coclea, rene e tiroide.

Coclea: espresso nelle regioni di riassorbimento dell'endolinfa.

Individuate 60 diverse mutazioni: 1-8% NSHL (DFNB4)

sindrome di Pendred

La SNHL si manifesta in associazione all'allargamento dell'acquedotto vestibolare.

OTOF

Codifica per una proteina implicata nel trasporto vescicolare di membrana. DFNB9 SNHL profonda con emissioni otoacustiche normali e neuropatia uditiva. La mutazione Q829X rappresenta il 3% delle SNHL in Spagna.

COCH

Codifica per una proteina costituente della matrice extracellulare dell'orecchio interno.

DFNA9 SNHL prelinguale progressiva e disfunzioni vestibolari.

WFS1

Codifica per una proteina implicata nella regolazione dell'omeostasi del Ca nel ER. DFNA6/14/38 SNHL moderata bilaterale, simmetrica sotto i 1000-4000Hz.

Sindrome di Wolfram: AR con insorgenza giovanile DIDMAOD (Diabete insipido, diabete mellito, atrofia ottica, sordità)

POU3F4

Codifica per un fattore di trascrizione

Trasmissione X-linked (DFN3)

Sordità non sindromica, progressiva e profonda. Possibile dilatazione del canale acustico interno (evidenziabile mediante CT) con aumento della pressione perilinfatica.

MITOCHONDRIAL MUTATIONS

Gene	Mutation	Manifestation
Syndromic HIH		
tRNA(Leu(UUR))	A3243G	MELAS, MIDD
tRNA(Leu(UUR))	C3256T	MERRF
Multiple deletions	4.7-7.0 kb	CPEO/Kearns-Sayre syndrome
tRNA(His)	G12183A	Pigmentary retinopathy and SNHL
tRNA(Gly)	T10010C	Encephalomyopathy and SNHL
tRNA(Ala)	A5656G	Encephalomyopathy and SNHL
12SrRNA	7472insC	Ataxia, dysarthria, myoclonus
ATPase6	T8993G	Leigh syndrome
ND5	11778	Leber's hereditary optic neuropathy
Nonsyndromic HIH		
12S-rRNA	A1555G	Aminoglycoside-induced SNHL
12S-rRNA	C1494T	Aminoglycoside-induced SNHL
12S-rRNA	961delT	Aminoglycoside-induced SNHL
TRNA(Leu(UUR))	A3243G	Nonsyndromic SNHL
tRNA(SER(UCH))	A7445G	Nonsyndromic SNHL
tRNA(SER(UCH))	Cins7472	Nonsyndromic SNHL
tRNA(SER(UCH))	T7510C	Nonsyndromic SNHL
tRNA(SER(UCH))	T7511C	Nonsyndromic SNHL

Mutazioni in 12s-rRNA possono causare SNHL lieve anche senza somministrazione di aminoglisidici

0.5-2.4% in pazienti europei con SNHL; 3% in pazienti giapponesi

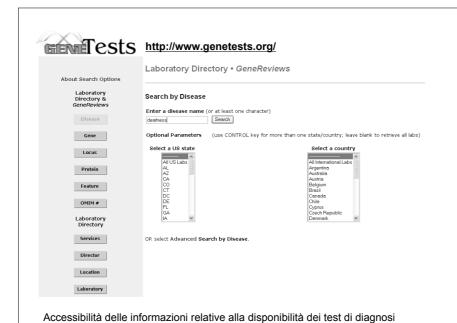
NSHL associata a mutazioni mitocondriali (trasmissione materna) è spesso in omoplasmia o a elevati livelli di eteroplasmia.


Non è possibile stabilire una correlazione genotipo-fenotipo. Probabile contributo di altri fattori (geni modificatori, fattori ambientali o polimorfismi mitocondriali).

Iter diagnostico molecolare per sordità non sindromiche

Criteri e classificazione delle sordità ereditarie e inquadramento genetico

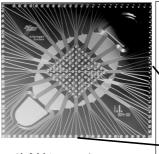
Table 1 Classification of H	IH .		
Criterium	Category		
Clinical manifestation	Syndromic (30-40%)/non-syndromic (60-70%)		
Location of defect	Sensori-neural/conductive (external/internal auditory canal		
	(spondylo-epiphysial dysplasia, Buchem disease, 4q/18q		
	translocation, branchiogenic deafness syndrome, osteopathia		
	strata with cranial sclerosis), middle ear (stapes ankylosis),		
	acoustic nerve (familial auditory neuropathy), brain)		
Onset	Pre-lingual/post-lingual (DFNA1, DFNA2, DFNA5, DFNA9, DFNA10, DFNA11, DFNA13,		
	DFNA15, DFNA17, DFNA22, DFNA36, DFNB2, DFNB8/10, DFNB16, DFN1)		
Progression	Progressive (DFNA1, DFNA10, DFNA11, DFNA12, DFNA13, DFNA15, DFNA19, DFNA22,		
	DFNA36)/nonprogressive/fluctuating		
Severity	Mild (21—40 dB)/moderate (41—60 dB)/moderately severe		
	(61-80 dB)/severe (81-100 dB)/profound (>100 dB)		
Frequency	Low (DFNA1, DFNA6/14/38)/medium (DFNA8/12, DFNA13,		
	DFNA21)/high (DFNA1, DFNA3, DFNA5, DFNA13, DFNA17, DFNA21)		
Auditory neuropathy	No/yes (DFNA2, DFNB9)		
Vestibular involvement	No/yes (DFNA9, DFNA11, DFNA17, DFNB2, DFNB4, DFNB12, DFN3)		
Radiology	Normal/abnormal (DFNB4)		
Affected genome	Nuclear/mitochondrial		
Transmission	AD, AR, XR, maternally, XD, Y-linked		
Number of genes	Monogenic/multigenic (digenic, chromosomal abnormalities)		
Gene and mutation	Known/unknown		
Gene location (linkage)	Known/unknown		
Penetrance	Complete/incomplete		
AD: autosomal dominant, AR: a	autosomal recessive, XR: X-chromosomal recessive, XD: X-chromosomal dominant.		


- Indagare: fattori pre-, post- e peri- natali, infezioni, prematurità,...
 Storia familiare di almeno 3 generazioni
- Esami dei tratti dismorfologici (attenzione speciale all'orecchio esterno e al collo, pelle, capelli, occhi e dita)
- 3. Investigazioni:
- serologia e colture nel caso di infezioni
- esami oftalmologici: capacità visiva, esami del fondo oculare (definizione di eventuali retinopatie)(Usher, Refsum)
- analisi dei parametri urinari indicativi per sindromi renali
- scanning renale per evidenziare eventuali displasie urinarie (Alport, BOR)
- neuro-imaging per evidenziare dilatazioni vestibolari e coclea di Mondini (Pendred, DFNB4)
- ECG in sordità congenite severe/profonde per evidenziare prolungati intervalli QT (Jervell e Lange Nielsen)
- Esami audiometrici nei familiari di primo grado
- Valutare i dati vestibolari: Usher tipo1, S. di Jervell e Lange-Nielsen, Pendred, Dfna9 (COCH), DFNA11 e DFNB2 (MYO7A), DFNB4 (SLC26A4), DFNB12 (CDH23)

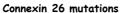
- caratterizzare il grado di ipoacusia (radiologia, test audiologici, vestibolari)
- Esclusione delle cause sindromiche attraverso la storia clinica familiare ed esami specifici (oftalmologia, esami renali, neuro-imaging)
- Screening GJB2 in tutti i casi non-sindromici con eziologia ignota.
- Screening del gene GJB6 nei casi di una sola/nessuna mutazione a carico di GJB2
- Analisi della muatazione mitocondriale A1555G nei casi *di nessuna mutazione* a carico di GJB2 e GJB6.

...e in assenza di mutazioni?

- in presenza di un allargamento del l'acquedotto vestibolare o di una coclea di mondini (trasmissione autosomica recessiva) ⇒ analisi SLC26A4
- $\ \, \textbf{@}$ nei casi di SNHL a basse frequenze (trasmissione autosomica dominante) \Rightarrow analisi WFS1
- nei casi di SNHL di tipo progressivo con disfunzioni vestibolari (trasmissione autosomica dominante) ⇒ analisi COCH
- in pazienti con sordità profonda con emissioni otoacustiche normali (trasmissione autosomica recessiva) ⇒ analisi OTOF.



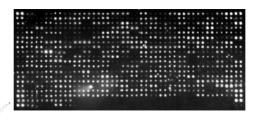
genetica e ai centri che li svolgono


15

Nuove prospettive

The NanoChip® Cartridge

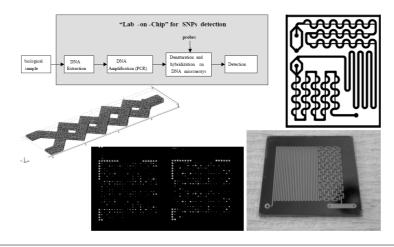
- · IVS 1+1 stab
- · 35delG
- · M34T stab
- · L90P stab
- · 235delC
- · 167delT
- · R184P stab



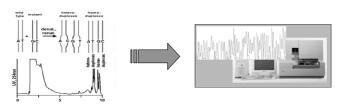
Fluidic and electronic interface

MICROARRAY

- → Analisi contemporanea di 28000bp, con screening contemporaneo di 9 geni sordità
- → Valutazione simultanea di un pannello diagnostico di 198 mutazioni nei geni GJB2, GJB6, GJB3, GJA1, SLC26A4, SLC26A5,12S rRNA e tRNA-Ser[UCN]: l'analisi evidenzia lo stato di omozigosi o eterozigosi



Gradner et al. Pediatrics, 2006



Postazione miniaturizzata per l'analisi contemporanea di circa 50 mutazioni con possibilità di implementare il numero di posizioni analizzate

Descrizione di nuovi geni sordità e nuove mutazioni

- POSITIONAL CLONING IN LOCI NOTI E DI NUOVA INDIVIDUAZIONE (Linkage in famiglie affette-analisi multistatistica in popolazioni isolate con elevate incidenza di sordità)
- 2. Selezione di geni candiadti sulla base di dati di letteratura

 Individuazione di nuovi geni candidati valutando la variazione dell'espressione di geni in sistemi in vitro con mutazioni a carico di GJB2

SCREENING MUTAZIONALE AD ELEVATA PROCESSIVITA' dei geni candidati in un esteso campione di soggetti affetti 800 soggetti (Italia, Belgio, Spagna, Israele) con NSHL GJB2 negativa.

Riferimenti:

- Finsterer J., Fellinger J. Nuclear and mitochondrial genes mutated in nonsyndromic impaired hearing. International Journal of Pediatric Othorinolaryngology (2005) 69, 621-647
- *©Cryns et al.* A genotype-phenotype correlation for GJB2 (connexin 26) deafness. J. Med. Genetic. 2004, 41:147-154
- Ricckert et al. GJB2 mutations and degree of heraing loss: a multicentre study. Am. J. Hum. Genet. 77:945-957, 2005
- Marlin et al. GJB2 and GJB6 mutations. Genotypic and phenotypic correlations ina large cohort of haring-impaired patients.
 Arch.Otolaryngol.Head neck surgery, 2005; 131:481-487
- Petersen et al. Non-syndromic, autosomal-recessive deafness. Clin. Genet. 2006: 69:371-392
- Schrijver I., Gardner P. Hereditary sensorineural hearin loss: advances in molecular genetics and mutation analysis. Expert Rev. Mol. Diagn. 2006: 6(3), 375-386
- Gardnes P. et al. Silmultaneous multi-gene mutation detection in patients with sensorineural hearing loss through a novel diagnostic microarray: a new approach for newborn screening follow-up. Pediatrics (2006)